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New York City greenhouse gas emissions estimated
with inverse modeling of aircraft measurements

Joseph R. Pitt1*,§, Israel Lopez-Coto1,2, Kristian D. Hajny1,3, Jay Tomlin3,
Robert Kaeser3, Thilina Jayarathne3,y, Brian H. Stirm4, Cody R. Floerchinger5,
Christopher P. Loughner6, Conor K. Gately5,7,z, Lucy R. Hutyra7, Kevin R. Gurney8,
Geoffrey S. Roest8, Jianming Liang9, Sharon Gourdji2, Anna Karion2,
James R. Whetstone2, and Paul B. Shepson1*,3

Cities are greenhouse gas emission hot spots, making them targets for emission reduction policies. Effective
emission reduction policies must be supported by accurate and transparent emissions accounting. Top-down
approaches to emissions estimation, based on atmospheric greenhouse gas measurements, are an important
and complementary tool to assess, improve, and update the emission inventories on which policy decisions are
based and assessed. In this study, we present results from 9 research flights measuring CO2 and CH4 around
New York City during the nongrowing seasons of 2018–2020. We used an ensemble of dispersion model runs in
a Bayesian inverse modeling framework to derive campaign-average posterior emission estimates for the New
York–Newark, NJ, urban area of (125 + 39) kmol CO2 s–1 and (0.62 + 0.19) kmol CH4 s–1 (reported as mean +
1s variability across the nine flights). We also derived emission estimates of (45 + 18) kmol CO2 s–1 and (0.20
+ 0.07) kmol CH4 s–1 for the 5 boroughs of New York City. These emission rates, among the first top-down
estimates for New York City, are consistent with inventory estimates for CO2 but are 2.4 times larger than
the gridded EPA CH4 inventory, consistent with previous work suggesting CH4 emissions from cities
throughout the northeast United States are currently underestimated.

Keywords: Urban emissions, Greenhouse gas emissions, Methane, Carbon dioxide, Bayesian inverse modeling,
New York City

Introduction
Cities are large sources of greenhouse gas emissions, with
an estimated 36.8% of total global emissions coming from
within urban extents in the year 2000 (Marcotullio et al.,
2013). In North America, this urban share of greenhouse
gas emissions was estimated to be even larger (49.2%;
Marcotullio et al., 2013).

To reduce emissions and mitigate climate change,
many cities are implementing new policy practices and
regulations (Trencher et al., 2016; Sethi et al., 2020). New

York City has legally binding emission reduction targets of
40% by 2030 and 80% by 2050, relative to 2005 levels
(New York City Mayor’s Office of Sustainability, 2016). As
part of the legislative effort to meet these targets, the city
council passed the Climate Mobilization Act, which intro-
duces emission limits on large- and medium-sized build-
ings under Local Law 97 (Climate Mobilization Act, 2019).

Progress toward emission targets and the efficacy of
emission reduction policies can be assessed through the
compilation of city-specific inventories, often referred to
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as self-reported inventories. These inventories estimate
greenhouse gas emissions using a bottom-up approach,
where the total emission from each source category is
calculated by multiplying activity data (e.g., fuel sales) by
an emission factor (e.g., greenhouse gas emissions per unit
of fuel sold). Self-reported inventories typically provide
emission estimates at the whole-city level, broken down
by emission source. These estimates can include direct
emissions within the city limits (scope 1 emissions), emis-
sions associated with electricity used within the city but
generated elsewhere (scope 2 emissions) and other indi-
rect emissions that occur elsewhere (e.g., landfill CH4) as
a result of activity (e.g., waste production) within the city
(scope 3 emissions; Nangini et al., 2019). The New York
City emissions inventory (MacWhinney and Barnett, 2019)
is compiled using a mixed-scope approach known as the
city-induced framework (Fong et al., 2014), which is de-
signed to account for emissions attributable to activities
within the city limits, regardless of emission location. This
mixed-scope approach includes some emissions from each
of scopes 1, 2, and 3 but does not include all the emissions
from any single scope. Quantifying indirect emissions is
important from a policy perspective, but it is challenging
to assess mixed-scope inventories with atmospheric mea-
surements, which are only sensitive to scope 1 emissions.

Spatially resolved inventories of scope 1 emissions have
been compiled at the national level, either using bottom-
up approaches (Gately and Hutyra, 2017; Gurney et al.,
2020) or using proxy data to spatially disaggregate
national emission totals (Maasakkers et al., 2016; Oda et
al., 2018; Janssens-Maenhout et al., 2019). These can be
used to assess and improve the self-reported inventories
or adopted as the primary method by which cities tailor
and assess their emission reduction policies (Hutyra et al.,
2014; Gurney and Shepson, 2021). A recent study by Gur-
ney et al. (2021) compared scope 1 emissions from the
national Vulcan inventory with self-reported inventories
from 48 U.S. cities and found that most cities underre-
ported emissions. The spatial information in gridded
national inventories allows them to be combined with
atmospheric transport models to estimate atmospheric
mole fractions, allowing direct comparison to measure-
ments and thus facilitating top-down approaches to esti-
mating emissions.

Many top-down studies have used tower-based mea-
surements of greenhouse gas mole fractions in an inverse
modeling approach to estimate urban emissions (Bréon et
al., 2015; Lamb et al., 2016; Lauvaux et al., 2016; 2020;
Staufer et al., 2016; Deng et al., 2017; Huang et al., 2019;
Nickless et al., 2019; Yadav et al., 2019). Tower-based sites
allow for continuous year-round observations, enabling
top-down fluxes to be estimated at annual timescales.
On the other hand, an individual tower has limited spatial
sensitivity, so multiple towers may be required to provide
the necessary spatial coverage to accurately estimate
whole-city emissions. Aircraft-based measurements cannot
provide the continuous temporal coverage of tower obser-
vations. However, by sampling a wide area in a short
period of time, well-tailored flight tracks enable aircraft
to provide useful snapshot estimates of whole-city

emissions, with the ready ability to define and change the
area of study.

Aircraft measurements can be used in an inverse mod-
eling framework to estimate urban emissions. This
approach incorporates information regarding the prior
fluxes, transport model, and measurements, including the
error covariance structure for each of these elements. Sev-
eral previous studies have applied such a framework to
estimate urban fluxes using aircraft measurements
(Brioude et al., 2011; Brioude et al., 2013; Pisso et al.,
2019; Lopez-Coto et al., 2020). However, this approach
has yet to be applied to estimate New York City green-
house gas emissions. In this study, we use measurements
from 9 research flights (during the nongrowing season)
and an ensemble of dispersion model runs in an inverse
modeling approach to estimate carbon dioxide and meth-
ane emission rates for the New York–Newark, NJ, urban
area and the five boroughs of New York City.

Methods
Aircraft measurements

Measurements were made on board the Purdue University
Airborne Laboratory for Atmospheric Research (ALAR),
a modified Beechcraft Duchess. Full details of the aircraft
payload and sampling configuration are provided by Cam-
baliza et al. (2014). Carbon dioxide (CO2) and methane
(CH4) mole fractions were measured using a Picarro Cavity
Ringdown Spectrometer (Crosson, 2008), calibrated in
flight using 3 calibration cylinders traceable to the
National Oceanic and Atmospheric Administration
(NOAA) reference scales for CO2 (X2007; Tans et al.,
2017) and CH4 (X2004A; Dlugokencky et al., 2005). The
cylinders were prepared, filled, and certified by NOAA;
details are provided in SI Table S1.1.

Three Picarro analyzers were used over the course of
the campaign: 2 different G2301-f analyzers and 1 G2401-m
analyzer. The 2 G2301-f analyzers were operated in low-flow
mode, with each species measured at approximately 1.2 s
intervals on 1 analyzer and 1.4 s intervals on the other. The
G2401-m analyzer took a measurement of each species at
approximately 2.3 s intervals. These analyzers exhibited
typical precisions of 0.2 ppm (mmol mol–1) for CO2 and
3 ppb (nmol mol–1) for CH4, based on analysis of data
gathered during in-flight and ground-based calibrations.
A linear calibration curve was derived for each flight day
using in-flight measurements of all 3 calibrations cylin-
ders on board the aircraft. In all cases, we obtained r2

values greater than 0.999, demonstrating good instru-
ment linearity.

Flights were performed on 9 separate days between
November 2018 and March 2020, with all flights taking
place in either November, February, or March. Flight tracks
are shown in Figure S4.1, which also gives the dates and
times of the flights. The total flight duration for each day
(as measured from the first usable measurement to the
final usable measurement) varied between 2.5 and 5.5 h.

Transport modeling

The surface influence, or footprint, of the sampled air was
determined using HYSPLIT v5.0.0 (Hybrid Single Particle
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Lagrangian Integrated Trajectory Model; Draxler and
Hess, 1998; Stein et al., 2015; Loughner et al., 2021),
a Lagrangian particle dispersion model developed by the
NOAA Air Resources Laboratory. This version of HYSPLIT
incorporates elements of STILT (Stochastic Time-Inverted
Lagrangian Transport Model; Gerbig et al., 2003; Lin
et al., 2003; Fasoli et al., 2018), a related model that
branched off an earlier version of HYSPLIT. This combines
features from STILT, including options for a different ver-
tical turbulence scheme that prevents well-mixed parti-
cles from accumulating in low-turbulence regions
(Thomson et al., 1997), a varying vertical Lagrangian
timescale (Hanna, 1982) and an additional boundary
layer turbulence parameterization (Hanna, 1982), with
recent model development and bug fixes within HYSPLIT
(Loughner et al., 2021).

Each of our HYSPLIT runs was repeated using 4 differ-
ent choices of input meteorology and 2 different turbu-
lence parameterizations (Hanna, 1982; Kantha and
Clayson, 2000) giving us an 8-member ensemble of dis-
persion model runs (hereafter referred to as the transport
model ensemble). The input meteorology was taken from
4 publicly available archived products: the European Cen-
tre for Medium Range Weather Forecasts Fifth Reanalysis
(ERA5), the NOAA Global Forecast System (GFS) model,
the NOAA North American Mesoscale Forecast System
(NAM) model, and the NOAA High-Resolution Rapid
Refresh (HRRR) model (see SI Section S2 for more details
on each product).

A separate HYSPLIT model run was conducted for every
minute of each flight that included aircraft sampling
within the boundary layer. The mean measured mole frac-
tion for each minute was calculated as an average over all
measurement points where the aircraft was within the
boundary layer, with the corresponding model particle
release consisting of approximately 1,000 particles distrib-
uted equally across these measurement locations (cover-
ing a horizontal distance of approximately 3–4 km at
typical aircraft speeds). In this way, we ensured that the
model run was representative of the measurements we
included in our average.

Tiered multi-resolution Bayesian inversion

framework

Fluxes were optimized separately for each flight using
a Bayesian inversion framework, after first subtracting the
background mole fraction from the aircraft measurements
(where the background is defined as the mole fraction of
CO2 or CH4 within the measured air prior to it entering
the domain; see SI Section S9 for details). This process
consisted of multiple stages:

1. Optimize fluxes on a large domain at coarse
spatial resolution (0.08� � 0.08�).

2. Use the posterior flux map from step 1 to esti-
mate spatial variability in the mole fractions of
CO2 and CH4 flowing into a smaller, high reso-
lution (0.02� � 0.02�) domain, nested within the
large domain and centered on New York City.

3. Optimize fluxes on the smaller, high-resolution
domain, taking into account the background
variability calculated in step 2.

The large domain (henceforth referred to as the d01
domain) was bounded by 34.4�N, 44.4�N, 83.7�W, and
69.7�W, while the smaller nested domain (henceforth the
d03 domain) was bounded by 39.2�N, 42.0�N, 75.7�W,
and 72.1�W (see SI Figure S3.1 for map). This approach
takes account of upwind sources that influenced our mea-
surements and provides an optimized representation of
their influence. This allows us to better isolate the specific
contribution from the area of interest (e.g., the New York–
Newark urban area) by providing an optimized back-
ground for each minute of the flight.

A gridded footprint (representing the influence of sur-
face fluxes on the sampled air) was calculated on both
the d01 and d03 domains for each minute of the flight.
Modeled mole fraction enhancements (in units of mmol
mol–1; commonly referred to as ppm) were derived by
multiplying these gridded footprints (in units of ppm
[mmol m–2 s–1]–1) by surface fluxes (in units of mmol m–2 s–1)
of CO2 and CH4. The inventories used to provide prior
fluxes are described in the following section. For both the
initial d01 inversion and the nested d03 inversion, opti-
mized posterior fluxes were obtained by minimizing the
cost function J(x):

JðxÞ ¼ 1
2

�
ðx� xbÞT Pb

�1ðx� xbÞ þ ðHx� yÞT R�1ðHx� yÞ
�
:

ð1Þ

This cost function assumes normally distributed uncer-
tainties and has the following analytical solution (Enting,
2002; Tarantola, 2005):

xa ¼ xb þ PbHT ðHPbHT þ RÞ�1ðy�HxbÞ: ð2Þ

Here x is a vector containing the fluxes that are to be
optimized, xa contains the posterior (optimized) fluxes, xb
contains prior fluxes derived from an emissions inventory
and H is a matrix containing the modeled footprint for
each minute of the flight. The vector y contains the mea-
sured mole fraction enhancements for each minute of the
flight, relative to a background value representing the
mole fraction present in the sampled air when it entered
the domain. For the d01 inversion, this background value
was taken to be constant, while for the d03 inversion,
a spatially varying background was calculated based on
the posterior fluxes within the d01 domain (see SI Section
S9 for more details, including details of a sensitivity anal-
ysis to determine the impact of the nested inversion
approach). The error covariance matrices Pb and R repre-
sent uncertainty in the prior fluxes and model–measure-
ment mismatch, respectively.

Error covariances

Following previous studies (Lauvaux et al., 2016; Lauvaux
et al., 2020; Lopez-Coto et al., 2017; Lopez-Coto et al.,
2020), the off-diagonal components of the error covari-
ance matrix Pb were populated using an exponential
covariance model (in space). The diagonal elements of
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Pb were populated on the assumption that the 1s flux
uncertainty in each grid cell equaled 100% of the prior
flux within that grid cell, following the values used by
Lopez-Coto et al. (2017; Lopez-Coto et al., 2020). For com-
parison, Andres et al. (2016) reported 2s grid-cell-level
uncertainties for a global CO2 inventory ranging from
4% to more than 190%, averaging about 120%. Gately
and Hutyra (2017) reported 50%–250% differences
between ACES (Anthropogenic Carbon Emissions System;
version 1) and 3 global disaggregated CO2 inventories at
city scales, with grid-cell-level differences of over 100% for
half of the grid cells (urban and rural) in the northeast
United States. For CH4, there are no good estimates of
grid-cell-level uncertainty, but considering recent work
indicating inventories significantly underestimate urban
CH4 emissions, and the lack of knowledge about CH4

sources at urban scales, we can only assume that the rela-
tive uncertainties are at least as large as for CO2. A lower
limit uncertainty in each grid cell was set to 1 mmol m–2 s–1

and 1 nmol m–2 s–1 for CO2 and CH4, respectively, allowing
some correction in grid cells with very low prior fluxes.

The off-diagonal elements of the prior flux error covari-
ance matrix, representing the correlation between prior
flux errors in different grid cells, were calculated according
to an exponential decay model based on the distance
between grid cells (Lauvaux et al., 2012; Lauvaux et al.,
2016; Lauvaux et al., 2020; Lopez-Coto et al., 2017; Lopez-
Coto et al., 2020). The correlation length was set to 10 km
following Lopez-Coto et al. (2017) who found this value to
be appropriate for studies at urban scales. A variogram
analysis of the spread of the prior flux ensemble indicated
that the exponential covariance model and the correlation
length used here are appropriate for both species in both
domains (see SI Section S11). The same approach to con-
structing Pb was used for both the d01 and d03 inversions.

A double exponential covariance model (in space and
time) was selected for the model–measurement mismatch
error covariance matrix R, with a correlation length of
1 km and a correlation time of 1 h based on the short
correlation length and time scales reported for atmo-
spheric trace gases in urban environments (Shusterman
et al., 2018; Turner et al., 2020). The diagonal elements
of R represent the combined uncertainty due to random
error in the measurements, model and background for
each minute of the flight. This was calculated by combin-
ing background uncertainty (see below) with the variance
across the eight transport model ensemble members for
a given minute and the variance in measured mole fraction
during that minute. In all cases, low limits for the uncer-
tainty of 0.2 ppm (mmol mol–1) and 3 ppb (nmol mol–1)
were used for CO2 and CH4 respectively, based on an anal-
ysis of instrument precision from calibration data.

The background uncertainty for the d01 inversion was
derived by calculating the respective variances in mea-
sured and modeled mole fractions across the background
data points, then summing these variances (see SI Section
S9 for the definition of the background points). For the
d03 inversion, these terms were combined with the vari-
ance of the spatially varying component of the back-
ground (i.e., the outside contribution derived from the

posterior d01 fluxes), taken across the 8 transport model
ensemble members.

Prior fluxes

Separate inversions were performed using 3 different CO2

flux priors and 4 different CH4 flux priors. For CO2, we
used fluxes from Vulcan v3.0 (Gurney et al., 2020), ACES
v2.0 (Gately and Hutyra, 2017), and EDGAR v5.0 (Emission
Database for Global Atmospheric Research; European
Commission Joint Research Centre (JRC)/Netherlands
Environmental Assessment Agency (PBL), 2019; Crippa et
al., 2020). For CH4, we used fluxes from EDGAR v5.0,
EDGAR v4.2 (European Commission Joint Research Centre
(JRC)/Netherlands Environmental Assessment Agency
(PBL), 2011) and the gridded Environmental Protection
Agency (GEPA) inventory (Maasakkers et al., 2016).
Because EDGAR v4.2 uses a population proxy to distribute
fluxes, it contains much larger emissions from urban areas
compared to EDGAR v5.0 and the GEPA inventory (con-
versely it is known to underestimate emissions in oil and
natural gas production regions). To bridge this large emis-
sions gap between inventories, we also used a composite
CH4 prior containing the average of the GEPA fluxes and
the EDGAR v4.2 fluxes in each grid cell.

In all cases, we used annual average emissions for the
most recent year available: 2015 for Vulcan, 2017 for
ACES, 2018 for EDGAR v5.0 CO2, 2015 for EDGAR v5.0
CH4, 2012 for the GEPA, and 2008 for EDGAR v4.2. The
use of annual average fluxes (even for those inventories
for which hourly fluxes are available) was motivated by
the fact that we did not have inventory fluxes for the
actual flight days (which were more recent than the latest
available inventory data). Furthermore, holding the prior
emission rates constant for each flight ensures that flight-
to-flight differences in posterior emission rates are not
a consequence of prior temporal variability. While prior
constraints are important for solving ill-posed problems,
it is known that the choice of prior flux map can influence
the posterior fluxes (Lauvaux et al., 2020). By using mul-
tiple priors for each gas, we reduce the dependency of our
mean posterior fluxes on one specific prior.

A conservative method was used to regrid each prior to
the extent and resolution of the d01 and d03 domains
(Zhuang, 2020). Canadian emissions for the U.S.-specific
priors (Vulcan, ACES, and GEPA) were taken from EDGAR
v5.0. A more detailed discussion of prior fluxes is given in
SI Section S3.

Sensitivity analysis

In addition to our base case ensemble of inversions, we
performed a sensitivity analysis to better understand the
impact of different background choices and prior error
covariance parameters in our posterior results, as well as
to quantify uncertainties in the methodology. A full
description of the sensitivity test cases is provided in SI
Sections S10 and S11.

Results and discussion
Total posterior emission rates were calculated for both
the 5 boroughs of New York City (NYC) and the wider
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New York–Newark urban area (see SI Section S3 for area
definitions). The wider urban area better represents the
area of sensitivity for our flights (see SI Figure S4.1 for
footprint maps); therefore, these wider urban area emis-
sion totals are the focus of analysis in this section. Emis-
sion rate estimates for the 5 boroughs of NYC are also
presented due to the high policy relevance of this area.

Urban area posterior emission rates

Figure 1 shows total emission rates within the New York–
Newark urban area boundary, broken down by flight,
prior, and transport model. The mean posterior emission
rate for CO2 was (125 + 39) kmol s–1, where the reported

uncertainty represents the 1s variability across the 9
flights (using ensemble-average totals for each flight). Also
shown (in purple) are inventory emissions from the hourly
ACES inventory and hourly Vulcan inventory, calculated
using only dates and hours that were representative of
our flights (see SI Section S5 for details). The mean value
of these representative inventory emissions was (145 +
21) kmol s–1 for ACES (15.5% larger than our mean pos-
terior estimate) and (124 + 20) kmol s–1 for Vulcan
(0.9% lower than our mean posterior estimate). The
inventory variability reported here represents 1s across
45 representative days in each inventory. Both our mean
posterior emission rate and these representative

Figure 1. Boxplots of the total posterior emission rates for the New York–Newark urban area. Results are shown
for CO2 (a, c, e) and CH4 (b, d, f), grouped by flight (a, b), by prior (c, d), and by transport model (e, f). Mean posterior
emission rates are represented by red crosses and panels (c) and (d) also show prior values as blue crosses. The dashed
lines represent the mean posterior (red) and prior (blue) emission rates taken over all flights, model ensemble
members, and priors. In the CO2 panels, representative inventory estimates are also shown (ACI is ACES inventory
and VUI is Vulcan inventory). In the transport model panels (e, f), ER is ERA5, GF is GFS, HR is HRRR, and NA is NAM,
while the 2 and 5, respectively, represent the Kantha and Clayson (2000) and Hanna (1982) turbulence
parameterizations. The boxes extend between the upper and lower quartiles, with the median values shown as
solid horizontal black bars. The whiskers extend to the highest and lowest data points within 1.5 times the
interquartile range of the upper and lower quartiles, respectively. All data outside these whiskers are shown as
individual points. DOI: https://doi.org/10.1525/elementa.2021.00082.f1
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inventory emission rates are larger than the correspond-
ing annual average emission rates (116 kmol s–1 for ACES
and 105 kmol s–1 for Vulcan) that we used as priors.
While we do not expect these representative inventory
values (from previous years) to agree perfectly with our
mean posterior emissions rates, the agreement shown
here is well within the observed flight-to-flight variability
of our estimates as well as the expected daily variability
of the inventories.

The posterior CO2 emission estimates represent total
emissions and are influenced by any contribution from
biospheric respiration and photosynthesis, while the
inventories only include anthropogenic fluxes. However,
the flights in this study were conducted during the non-
growing season and the estimated biospheric contribution
was very small, approximately 2% on average (see SI Sec-
tion S6 for details).

The posterior CH4 emission rates calculated for the
New York–Newark urban area using all 4 priors are much
larger than emission rates from the GEPA and EDGAR v5.0
inventories but much smaller than the emission rate from
EDGAR v4.2. The mean posterior CH4 emission rate was
(0.62 + 0.19) kmol s–1 (1s variability across flights). This
mean posterior total is 2.4 times larger than the annual
value from the GEPA inventory.

The temporal variability of urban CH4 emissions on
diurnal, weekly, and seasonal timescales is poorly under-
stood. None of the CH4 inventories used in this study
provide emission estimates on hourly timescales, so it is
not possible to repeat the calculation of representative
inventory totals presented above for CO2. Recent studies
in Los Angeles (Yadav et al., 2019) and Washington, DC–
Baltimore (Huang et al., 2019) found large seasonal cy-
cles in urban CH4 emissions. Floerchinger et al. (2021)
observed significant seasonal variability in the biogenic
fraction of CH4 emissions for several cities, including
New York. More flights are required to provide the
annual coverage necessary to confirm if strong seasonal-
ity also exists in total CH4 emissions for the New York–
Newark urban area.

It is important to emphasize that our mean posterior
emission rates (for both CO2 and CH4) do not represent
estimates of annual average emissions but can be re-
garded as the current best top-down estimate for the
nongrowing-season, daytime value. However, the finding
that emissions are underestimated in the GEPA inventory
is likely to hold at the annual timescale, as emissions
during much of the rest of the year would have to be
almost zero in order to offset the 2.4 times larger CH4

emissions observed during November, February, and
March in this study.

Sources of variability and uncertainty analysis

The flight-to-flight variability in urban area posterior emis-
sion rate was 31% for both CO2 and CH4 (1s, relative to
the mean posterior emission rate). These values for relative
flight-to-flight variability are similar to those reported by
Lopez-Coto et al. (2020) for the Washington, DC–Balti-
more urban area. Table 1 gives the 1s spread in posterior
emission rate across base case ensemble members (trans-
port models and priors) and sensitivity test ensemble
members (prior error covariance parameters and back-
ground definitions—see SI for more details), including the
average spread for a single flight and the spread in
campaign-average emissions. For both species, flight-to-
flight variability in posterior emission rate was larger than
the combined spread across the ensembles (calculated by
adding individual ensemble spreads in quadrature). It is
noteworthy that the combined ensemble spread for CH4 is
much smaller than the difference between the mean pos-
terior emission rate and the inventory values.

To provide a rough estimate of expected variability in
true CO2 emissions from flight to flight, we calculated the
variance in inventory emissions for the urban area using
dates and hours corresponding to each flight (see SI Sec-
tion S5 for details). The standard deviation in inventory
emissions across 45 representative days in ACES was equal
to 15% of the average emissions across these days, while
for Vulcan, this value was 16% (boxplots showing these
representative emissions for both inventories are shown in
purple in Figure 1).

There are multiple potential reasons why the flight-to-
flight variability (31%) of our posterior emissions is larger
than that calculated using representative inventory emis-
sions. Differences in sampling pattern for each flight
(shown in SI Figure S4.1) mean that different parts of the
urban area were sampled on different flights. Because the
measurements are not sensitive to the whole urban area
for each flight, emissions in unsampled areas default to
the emission rate of the prior. In addition, different areas
were sampled at different times within each flight, which
for sources with large hourly variability in emission rate
can result in apparent flight-to-flight variability in poste-
rior emissions. Thus, this irregular sampling combined
with large spatiotemporal variability in fluxes can become
aliased as apparent temporal variability, as demonstrated
by Lopez-Coto et al. (2020). In addition, for a given ensem-
ble (e.g., transport or background), errors in the ensemble
mean can differ in magnitude and direction for each

Table 1. 1s spread in posterior emission rate for the New
York–Newark urban area across each ensemble, relative to
the base case ensemble mean. DOI: https://doi.org/
10.1525/elementa.2021.00082.t1

Ensemble

Single-Flight
Ensemble Spread

Campaign-Average
Ensemble Spread

CO2 (%) CH4 (%) CO2 (%) CH4 (%)

Transport model 13 12 3.8 3.6

Prior 8.2 18 7.9 18

Prior flux
covariance
parameters

4.6 4.2 3.7 2.8

Background 4.6 8.6 4.3 7.7

Combined 16 24 10 20
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flight, thus increasing the observed flight-to-flight
variability.

Finally, the variability in inventory emissions may not
be truly representative of real emission variability because
the temporal emission profiles in the inventories are
partly based on interpolation and/or downscaling using
proxy data (resulting in smoothed temporal emission pro-
files). It is also worth considering that inventory emissions
are for previous years, which may have had lower variabil-
ity than the flight days, and that the flights were con-
ducted in 2 different winters (2018–2019 and 2019–
2020) while the inventories are only for a single year each,
so potential interannual variability is not accounted for.

Quantifying the accuracy of the emission rate estimates
is challenging since the true value is not known. On one
hand, the combined campaign-average ensemble spreads
(10% for CO2, 20% for CH4) could be larger than the
uncertainty of the mean posterior emission rate because
this mean value represents an average over the base case
ensemble members. Conversely, the potential methodo-
logical sources of flight-to-flight variability discussed
above (e.g., emission aliasing) are not accounted for in the
campaign-average ensemble spread but nonetheless con-
tribute toward the overall uncertainty. In general, we focus
on flight-to-flight variability when reporting results, rather
than the campaign-average ensemble spread, but it is
important to note that the 1s flight-to-flight variability
includes both real variability in emissions and methodo-
logical uncertainty.

NYC posterior emission rates

We also calculated mean posterior emission rates for the 5
boroughs of NYC: (45 + 18) kmol CO2 s–1 and (0.20 +
0.07) kmol CH4 s–1 (1s variability across flights). As was
the case for the urban area totals, inventory CO2 emission
rates calculated for NYC using dates and hours represen-
tative of our flights are consistent with our posterior va-
lues. The representative NYC emission rate for ACES was
(45 + 9) kmol CO2 s

–1, while for Vulcan it was (52 + 10)
kmol CO2 s

–1. The fact that the mean NYC posterior emis-
sion rate for CO2 is in line with expectations based on
representative inventory emissions (within 15% for both
inventories) is an encouraging sign that the inversion is
able to estimate emissions at spatial scales smaller than
the wider urban area. Further details of the spatial struc-
ture of prior and posterior fluxes in central NYC are given
in SI Section S8.

It is difficult to compare our posterior emission rates
directly to the NYC self-reported inventory (SRI) because
that inventory includes a mixture of scope 1, 2, and 3
emissions and does not provide scope 1 totals for each
emitted species. The 2019 SRI total for CH4 is 0.21 kmol s–1

(New York City Mayor’s Office of Sustainability, 2020), but
this is dominated by waste emissions (0.17 kmol s–1), which
are mainly scope 3 (as landfill waste is exported from the
city; MacWhinney and Klagsbald, 2017). The SRI CH4 emis-
sion estimate for natural gas distribution leakage is a scope
1 value; for 2019, this was calculated to be 0.041 kmol s–1

(21% of our posterior emission total). Considering that
previous studies (Plant et al., 2019; Floerchinger et al.,

2021) have shown that the majority of New York CH4 emis-
sions are from thermogenic (i.e., natural gas) sources, it is
likely that the SRI underestimates scope 1 thermogenic
emissions. More measurements of NYC C2H6 emissions
could enable a direct quantitative assessment of thermo-
genic SRI CH4 emissions. CO2 emissions in the NYC SRI
are also comprised of multiple scopes, but a recent study
(Gurney et al., 2021) has shown that total emissions from
scope-1-only source categories in the NYC SRI are lower
than the corresponding total Vulcan emissions for these
categories by 19%.

Posterior-prior spatial differences

The spatial distributions of the difference between poste-
rior and prior fluxes are shown in Figure 2. Prior emis-
sions were adjusted upward throughout the urban area for
Edgar v5.0 CO2, Edgar v5.0 CH4, and GEPA CH4. Con-
versely, the large prior CH4 emissions in Edgar v4.2 (dis-
tributed according to population) were adjusted
downward throughout the urban area. Posterior fluxes
estimated using the Vulcan and ACES CO2 priors showed
an upward adjustment throughout most of the urban
area, but a downward adjustment in central New York City
(specifically in the southern part of Manhattan—see SI
Figure S8.1 for a zoomed in map). The spread across pos-
terior fluxes using 3 different priors for this area is smaller
than the spread across the prior fluxes themselves. How-
ever, further research is required, including higher resolu-
tion transport models, to understand whether small-scale
spatial features observed in these posterior emission maps
reflect real spatial patterns in emissions or artifacts of the
relatively coarse resolution of the transport models used
(see SI Section S2 for more details regarding the transport
model configuration). New York City is a very complex
land/urban/water interface, and increased resolution
would allow for better representation of smaller spatial
features that could alter the local circulations.

Emission ratio

The average posterior CH4:CO2 emission ratio for the
New York–Newark urban area is (4.9 + 0.7) nmol mmol–1

(1s variability across flights), and for New York City it is
(4.4+ 1.1) nmol mmol–1. As for the posterior CO2 and CH4

emission rate estimates, this ratio should be interpreted as
an average over the dates and times (daytime, nongrowing
season) of our flights, not an annually representative value.
Nonetheless, it is interesting to compare our emission ratio
against enhancement ratios for the New York–Newark
urban area reported by previous studies. Plant et al.
(2019) reported an average CH4:CO2 enhancement ratio
of 7.2 (þ1.4/–1.0) nmol mmol–1 (95% confidence interval),
taken over 10 flight days during April and May 2018. A
lower enhancement ratio of 3.7 (þ0.3/–0.2) nmol mmol–1

(95% confidence interval) was reported by Floerchinger et
al. (2021) for a single (“winter”) flight in March 2018 (see SI
Figure S7.1 for a comparison plot).

Plant et al. (2019) also estimated a CH4 emission rate
for the urban area, which they calculated as the product of
their CH4:CO2 enhancement ratio and an inventory esti-
mate of CO2 emissions. They derived a total CH4 emission
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rate that was 2.7 times larger than the GEPA inventory
value, in relatively close agreement to the results of our
study (2.4 times larger than the GEPA inventory). At first
sight, this appears at odds with the fact that the Plant et al.
(2019) enhancement ratio is significantly larger than our
estimated emission ratio. This apparent discrepancy is rec-
onciled by considering that the CO2 inventory emission
rate used by Plant et al. (2019) is lower than our mean
posterior CO2 emissions. This is not unexpected, as CO2

emission inventories suggest emissions during April and
May are typically lower than emissions during November,
February, and March (as shown in SI Figure S5.1).

Conclusions
Our posterior emission rate estimates show good agree-
ment with representative values from the ACES and Vul-
can CO2 inventories. In contrast, none of the available CH4

inventories fell within a factor of 2 of our posterior esti-
mates. It is of particular policy relevance that our posterior
CH4 emission rate estimate for the New York–Newark
urban area was 2.4 times larger than the GEPA inventory.
Taken together with previous studies in other cities, there
is strong evidence that the GEPA inventory widely under-
estimates urban CH4 emissions.

Underestimation of urban CH4 emissions could impede
urban emission reduction policies if cities neglect to
address important (but difficult to quantify) emission
sources such as natural gas leaks. Accurate, spatially
resolved bottom-up estimates of U.S. CH4 emissions would
allow cities to develop better informed emission reduction
policies, but uncertainty in the magnitude and location of
key sources (e.g., emissions from natural gas distribution)
makes it difficult to compile such an inventory with the
required accuracy.

Aircraft measurements enable top-down estimates of
urban greenhouse gas emissions at spatial scales represen-
tative of the whole urban area. To track changes in annual
emissions, it is necessary to design aircraft sampling cam-
paigns to include repeat flights covering weekly and sea-
sonal timescales of emission variability. In addition, as
suggested by Lopez-Coto et al. (2020), increasing the num-
ber of simultaneous measurements might at least partially
alleviate the flight-to-flight variability caused by irregular
sampling. In the case of New York City, increasing the
seasonal coverage of flights to better quantify the poorly
understood seasonal cycle of CH4 emissions is a particular
priority. Regular aircraft sampling could be especially valu-
able in cases such as New York that lack an extensive
network of urban tower measurements.

Figure 2. Maps showing the campaign-average difference between posterior and prior fluxes. Results are shown
for CO2 (a–c) and CH4 (d–f). The New York–Newark urban area boundary is shown in black. Color scale is saturated at
the shown limits. DOI: https://doi.org/10.1525/elementa.2021.00082.f2
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Inverse modeling can play a key role going forward by
providing independent quantification of emissions in
near-real time. It can be used to evaluate emission esti-
mates in the past (if measurements exist), and it can be
used to update inventories and tailor policy in the present.
There is an inherent positive feedback loop between top-
down inverse modeling emission estimates and inventory
development. Top-down emission estimates can be used
to improve the models and data on which the inventories
rely, resulting in better inventory products. These
improved inventories then provide more accurate priors
for subsequent inverse modeling studies, resulting in
improved emission estimates and reduced posterior un-
certainties. Together, top-down and bottom-up emission
estimation approaches can effectively guide emission
reduction policy in urban areas.
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